
Placing Elements in HTML - Positioning

Normal Flow of the Document
Normal flow is the way a web document will display in the browser or viewport. The content will

flow down the page, starting with the first element in the body of the html and finishing with the
last element in your document.

Block elements are formatted visually as blocks and will start a new line at the left and stack up

vertically, i.e. paragraphs.
Inline elements will remain in a line horizontally going left to right until there is no more room to

the right and then drop to a new line, i.e. images and links.

Box Model
Open box.html in Firefox browser. Note the dimensions used to create this box. css

.inside { margin: 50px;
 padding: 20px;
 width: 100px;
 border: 5px solid #0000FF;}

Proper Box Model

The width, the blue content area, is 100px.
The padding, borders and margins are added on to the outside of the width,

to arrive at a total of 150px for the visible bordered box dimension,

or 250px from outer (dotted) margin edge to outer margin edge.

50 + 5 + 20 + 100 + 20 + 5 + 50 = 250 pixels actually filled on screen

According to CSS specifications: As IE 5 interprets:

IE5 Broken Box Model

In IE5, "width" was the area including the

blue border and padding.

50 + 100 + 50 = 200 pixels actually filled on screen

• Missing DOCTYPE (Quirks mode) will invoke broken box model in IE6.

• To avoid problems with old IE 5 browsers, when possible avoid setting padding and border

on an element with a stated width.
o Add the margin to the contained element or if necessary add a wrapper div.

• Use Web Developer toolbar to see IE5 box model effect on your layout if you need to

support IE5 browser (CSS>Use Border Box Model)

So if you are setting a width on an element to fit into a limited space, say your sidebar column is
300 pixels, you must take into account the margin, border and padding involved and subtract

these dimensions from the width you set for sidebar in the css. For example, I want my sidebar

to be 250 pixels wide, and I want a 1 px border and 25px margin on the right, plus padding on
the left and right of 20 pixels. 20 + ? + 20 + 1 + 25 = 250 (250 – 66 = 184)

The box model also has "layers". The following diagram shows the layers and position of each

element in the box. (image from http://www.hicksdesign.co.uk/boxmodel/)

Visualizing Margins in Dreamweaver
You can use the Dreamweaver Block Visualization and Ruler Guides to help you get your

element boxes right. Dreamweaver shows the Visualization on block elements such as div tags,

and any other page element that includes the display:block, position:absolute, or
position:relative. It does not however display like this for simple paragraphs and inline

elements, such as images. This feature is turned on from the Toolbar Menu>View>Visual Aids

Open a new document in Dreamweaver

and Save As margin.html in the

positioning folder. With the

Rulers on (View>Rulers>✔Show), drag

out a vertical guide to 300 pixels. In the

CSS panel, create a new rule for Body

and set all margins to 0. Click OK.
Using Loreum Ipsum, insert a

paragraph of text.

In the CSS panel, create a New CSS Rule for the <p> tag. In the CSS Rule Definition dialog

box, choose the category Block, and set display: block. This will get Dreamweaver to

"Visualize" the padding and margins. We are not really adding anything to the paragraph style

here, because a paragraph is already a block element. You would not usually add this property,
we are just doing it here to help us see how the box model works.

Now set your box properties for the <p> rule to see the results of adding margin, padding and

border to the size of the box. In the Box category in the dialog, set the width to 300px, set all

margins to 50px and set all padding to 20px. Switch to the Border category of the CSS Rule
Definition dialog and set all borders to solid, 5px and pick a blue color. Click OK.

Back in your design view window, place your cursor over the edge of the border until you

see the light dotted outline turn pink and then click. You will see the Visualization of the
margins and borders. You can see that with these settings, the space that our paragraph

occupies with its borders and margin and padding is far greater than the 300 pixels that we want

it to take up.
We must subtract the extra margin, padding and border to get the remaining width and this is

what we must use for our element's width in our css rule. So 300 (total width) - 100(right and

left margins) - 10(right and left borders) - 40(right and left padding) = 150 width to set

in css rule.

In your CSS panel All View, click on the p
rule, and then in properties for "p" sub-

panel, click on the width property and change

the width to 150px. Check your paragraph

using the Visualization again and note that it
now occupies the proper amount of space.

Margin collapsing
Margin collapsing happens when two or more vertical margins meet, they collapse to form
a single margin, equal to the height of the largest margin. When two elements with top and

bottom margin are over each other, the total margin is reduced to equal only one, the largest.

In the CSS Panel, select the p tag rule, then in sub-panel properties for "p", change the

width property to 500px so we can see this more easily with our Dreamweaver visualization

feature. Back in the document window, press the Enter or Return key to add a new paragraph
and insert some more text. If you click on the dotted block outline to revel the margins, you

can see that each paragraph is "sharing" the 50 pixels space in between the blocks.

In the CSS panel, select the p rule and using edit (pencil icon at

the very bottom of the CSS panel), open the CSS Rule definition

dialog box, choose the Box category. For Margins uncheck Same
for All, set the Top to 25px and leave the bottom at 50px. In the

design window, click on each paragraph block outline to see the

effect of the collapsed margin. They still share the space, and it is
the larger of the two margins, with the top margin of 25 pixels

collapsed into the 50 pixels of the top paragraph.

You can pull the horizontal guides down from the ruler to the
edges of each paragraph and while holding down the CMD key,

hover over the space in between to see the measurement of 50

pixels.

When an element with a top or bottom margin is contained within another element,

without padding, their top and bottom margins will also collapse together.

In the CSS panel, select p and in the properties for "p" sub-

panel, delete the property for padding. In the design window,

select the two paragraphs to wrap them in a <div>. While

selected choose from the Toolbar Menu>Insert>Layout
Ojects>Div Tag. In the CSS panel, create a New CSS rule for

the element <div>. In the CSS Rule Definition dialog choose

Box category and set all margins to 50px.

Now select the dotted block outline of each paragraph to see

where the top margin of the first paragraph has collapsed into the top margin of the containing

div and the bottom margin of the second paragraph has collapsed into the bottom margin of

the div.

Some designers choose to always set their paragraph top margins to zero and control only the

bottom margins, and then setting headings to have a larger top margin than the paragraphs

bottom margin so headings have more space to separate them from the previous content.

As you have probably noticed with this last exercise, the right

and left margins of the division and the paragraphs did not
collapse. Margin collapse only applies to vertical margins (top

and bottom). Once you understand the margin collapse, you

can use margins properly to control your layout.

Positioning
CSS provides the rule position to allow you to position elements out of their normal document

flow. The values available are relative, absolute, fixed and static. Fixed is not supported in IE6

and static is not widely supported at all.

Relative Postioning
Relatively positioned elements are positioned within the normal flow and then moved. Elements

that come after a relatively-positioned element behave as if the relatively-positioned element

was still in its ‘normal flow’ position - leaving a gap for it.

Open relative.html in your positioning tutorial folder.

There are several css rules already added to this page, mostly to add borders, zero margins

and make containers.

Look at the .shiftrelative rule. Select and open using the edit pencil icon. Choose the

Positioning category. Type relative is choosen and under placement we are telling the Top

property to move down from the top .5em and the Left property to move to the left .5em from
the normal document flow. Some people use a period to mark the normal location of the

content, as we did with the [photo here] text in our float exercise to mark where the image was

inserted in our paragraph. Click Cancel to close the dialog box.

Back in design view in the document window, place your cursor in the third box with the text

Shift me! In the Tag Selector bar, select the <p> tag and right click to apply the style

.shiftrelative. Observe the paragraph is now down and to the left of its original placement

and none of the other elements have shifted before or after this paragraph.

Go to the CSS Panel, select .shiftrelative and change the positioning properties in the

properties for ".shiftrelative" sub-panel. Refresh the design view or preview in the browser to
see the effects. Try changing the Left property to a negative: -3em and notice that the

paragraph block is now outside the viewport and the containing wrapper and container divs.

Now change the Top property to a negative: -3em, and notice that the paragraph is move up

from its normal location. Both top and left properties are working from the top left corner of the
element to be positioned. Bottom and Right properties work with the bottom right corner of the

element. Now add a property to .shiftrelative for bottom: 1em and right: 1em and delete

the current left and top properties. Notice how the block has shifted up and over from the

bottom left location that it normally occupied. Change the measurement for right to a negative:

right:-3em and notice how the paragraph block moved to the right. So just remember that these
properties describe moving the element from the location named by the property, and are not

about the direction you are moving the element.

Absolute Positioning
An absolute positioned box is moved out of the normal flow entirely and thus takes up no space

where it is in the normal document flow, leaves no gap behind like the relative positioning did.

Again placing a text marker or a period can help a designer visualize the effect of absolute

positioning.

The most important aspect of the absolute positioned element is that its position is based on the

document tree and its containing blocks. It is positioned in relation to its nearest positioned

ancestor. If there is no positioned ancestor, then it is positioned in the viewport.

Return to relative.html and look at the rule .shiftabsolute in the CSS Panel. Click on

the edit icon to open the edit dialog box and choose Positioning category. Notice that the Type

is now absolute. Look at Placement and notice that this

rule uses Bottom and Right to absolutely position the
block at the bottom right of the last positioned ancestor,

which for the header element is the viewport. Go to your

document window, place your cursor in the header and

from the Tag Selector bar, right click on the <h1> tag

and apply the css style .shiftabsolute. Preview in

the Firefox browser and notice that the header block is

now at the very bottom right of the viewport and outside
all of the <div> containers. If you change the size of the

viewport, the header block moves with the bottom right corner. In the CSS Panel, with the

.shiftabsolute rule selected change the value for the property bottom to 3em in the

properties panel. Preview again in the browser. Notice that it still homes to the bottom right

corner, but is now 3ems above the bottom edge. Again if you change the size of the browser
window the header tracks with it remaining 3ems above the bottom edge. In the CSS Panel

properties for .shiftabsolute,

change the Placement values back to

bottom:0 and right:0.

 Now look at the rule

.relativeancestor in the CSS

Panel, select it and see in the

properties panel, that this rule has a
property of relative, but no placement

properties and a dotted border to help

us see the effect. We are now going

to give the <div id="wrapper">
this style. Click anywhere in the

paragraph box areas, and in the Tag Selector bar, choose <div#wrapper> and right click to

apply the .relativeancestor style. Save and preview in Firefox borowser. The header block

is now absolutely positioned within the last relatively positioned ancestor, the wrapper div.

Now add .shiftabsolute to the

<div#container> in the same manner

and preview in browser. Now the header

block is positioned at the bottom right of
the container div, because it is now the

nearest ancestor positioned. Notice that

Dreamweaver does not do a great job in

the design view of displaying the
absolutely positioned header. Always

preview in Firefox to be sure of the effect.

Place your cursor on the header block and
using the Tag Selector remove the class

.shiftabsolute from the <h1> tag, by right clicking and selecting none from the styles

dropdown list. You should see the header block return to its normal position in the document

flow. Place your cursor at the end of the header text and insert the image cosmo_badge.gif.

Now in the Tag Selector bar, choose the <h1> tag and add the style .relativeancestor.

Then select the tag and add the style .shiftabsolute. In your CSS Panel, change

the Placement Properties' values for .shiftabsolute to place the image in the top left corner

of the header.
(Add top:0 and left:0, and delete bottom and right properties.)

The image is now covering the text. This is the problem with absolute and relative positioning. If
not used carefully they can overlap other elements. We can fix this by shifting our header text

over and out of the way of the image by adding padding-left of 85px to our h1 rule. If we tried

to add margin-left the container block for <h1> would simply move over with the image still
obscuring the text.

Z-index and the layer

Because absolutely positioned elements are taken out of the flow of the document, they can

stack up similar to what we saw with our image and header. The default order of these "layers"
is the source order. You can control the stacking order of these boxes by setting a property

called the z-index. This only works when the objects you are "layering" are absolutely

positioned, so this would not have fixed our header text. Open absolute-z-index.html in

your tutorial file. Both the red (AP one) and green (AP two)

blocks are absolutely positioned. Because the AP two block
comes after the AP one box in the source order, it is on the

top "layer" and covers part of AP one. Go to your CSS

Panel and select AP one and click on the edit tool to open
the CSS Rule Definition dialog box. Choose the Positioning

category and for Z-index enter a value of 100. The higher

the z-index, the higher up the box appears in the stack. In

design view you will see that the green AP one is now on
top covering part of AP two. You do not have to create z-index numbers in sequential order, just

smaller to larger controls the order. Usually designers leave some gap in the numbering, using

100s or 10s, to avoid re-numbering in case another z-indexed element needs to be added.

NOTE: Always test your absolute placement elements in the browser by adjusting the

View>Text size, to make sure that enlarging the text does not move things into positions that
relatively or absolutely positioned element can obscure them.

There is a bug in IE5.5 and IE6. If you position something absolutely bottom right, you must

have some dimension set (width or height) on the relative ancestor container that you wish to

place it within, or IE will ignore the container and position it within the viewport.

Fixed Positioning
Fixed positioned elements are moved out of the normal flow entirely - relative to the viewport.

This means that they don't move if the page is scrolled. Win/IE6 and below do not support this
positioning method at all. Basically fixed positioning is a sub-category of absolute, where

regardless of the positioned ancestors, the containing block is the viewport. This allows you to

create floating elements that always stay in the same position in the window. For an example
see: http://www.w3.org/Style/CSS/

Static Positioning
A statically positioned box is one that is in the normal position based on the document flow.

Floats
Floating a box will either shift if to the left or the right until its outer edge touches the edge of its
container, or another floated box. It is not in the normal flow. Other block boxes behave as if the

floated box wasn't there. Floats are not actually positioning rules, and are meant to provide a

way to wrap content around elements. But designers have come to rely on them to get desired
layout effects.

Open float.html in Dreamweaver.

This page already has some CSS Rules embedded in the head to help us visualize the float

principals: a style to outline the p and h1 elements in red with a background of light blue, a style

to give the strong element a red color and a style to give img element margin: 1em on all

sides.

Insert the image dandelion.png after the marker text [photo here] and after the
element in the first paragraph. (To make sure you are outside the tag, click inside the
[photo here] text, go to the tag selector bar, select and use your right arrow key to

move off it to the right. Check your code view, you should see the insert I-beam after the closing

 tag and then insert the image.)

The marked text [photo here] tells us where the image is in the source order compared to

where it floats. In the CSS panel select the image and in the tag selector bar, right click on the

tag img and in the box category of the CSS rule dialog add the property float: left. Notice

in the design view that the image is now moved to the left and the paragraph text is wrapping

around it, much like you might do in MS Word or InDesign.

We don’t want all images we use on this page to necessarily behave this way, so we will delete

the property from the img element style and create a custom class css rule .featurephoto.

In the CSS Panel , click the new rule icon to get the New CSS Rule dialog window

Making sure Class is chosen, type the
new custom class name .featurephoto

and make sure This document only is

selected, and OK.
 In the CSS Rule definition dialog, go to

the Box category and set float:
left.

Back in the design view, select the image and in the properties panel apply the css rule
.featurephoto.

You can see that the image has now floated all the way to the left edge of the body. Notice that

it has been removed from the normal document flow, where we have the marker text [photo

here]. Also note that the block elements’, paragraph and h1, borders and backgrounds boxes
extend behind the floated image, and the text is wrapping around the image with 1em margin.

Let’s edit the css rule .featurephoto to float the image to the right. In the CSS Panel, select

.featurephoto from the list of rules, go down to the properties section of the panel and click on

the float property value and change it to right.

See how the image now floats all the way to the right and

the text is wrapping around the left side. In the CSS Panel,
selecting .featurephoto from the list of rules, go down to the

properties section of the panel and click on the float

property value of right and change it back to left.

Even though the h1 element is a block element, it will not

drop below the floated element and start a new block. In
order to force an element to "clear" the float and start a

new block, we must use the clear property. There are

three values, clear: left, clear: right, clear:
both. The clear: left is what we need here to force

the heading to "clear" or drop past the left floated floating

image and start a new block. Place your cursor in the h1

element and in the CSS panel, create a new CSS Rule for

the just the tag element h1. In the CSS Rule definition,

select the Box Category and set clear: left. Now we

see that the heading has dropped below the image and

starts at the left. In the CSS Panel All view, delete the last h1 rule that we made and let the

heading return to the wrapping position. Now select and drag and drop the image to the end of

the heading text. Even though it still has the float property, it does not affect the elements that
come before it, only elements that follow in the document flow. Undo the image move (CMD or

CTRL Z).

Now we want to put our all of our text and the image into a division and add a background color.

Select all the body content and from the Insert Panel, select the Insert Div Tag icon and choose

wrap around selection and choose the ID “wrapper”. Or in the code view, add <div
id="wrapper"> opening tag and closing </div> tag to contain our all the content, inside the

<body> element. The #wrapper rule with a background color has already been defined in the

embedded head css. Notice that the background color is not encompassing the full image. Part
of the image is hanging out. Just as we saw the image extend beyond the individual block

paragraphs and heading, the block element of a division also does not contain the float.

Now go to the code view and delete the all paragraph text and heading text, leaving only the

image and observe what happens to the div with our background color. Preview it in Firefox

and you will see that there is nothing left visible of the div except the border. Because the

floated image is taken out of the flow of the document, the wrapper div has no actual content

and collapses. (NOTE: IE6 and below ignores this css standard behavior if the container has a
width OR height, so be sure you are viewing with Firefox or another compliant browser.)

Undo (CMD or CTRL Z) to restore the content.

You will often want to have a background image or color, or border to surround all the content in

a <div> that has floated elements that extend beyond the content. To do this we will use the

clear property again; this time to trick the div into containing the floats. But we don't want to add

clear to change the position of any of the wrapping text already here, so we have to add

something to force the "clear." For this demonstration, we will add an empty <div>, just inside

the <div id=”wrapper”>, using custom class of .clearfloat on the extra div, to get the

needed clear property. Create a new CSS Rule for a custom class named .clearfloat. In the

CSS Rule definition, choose Box category and set, clear:both; and height:0; in the Text

category set font-size: 1px; line-height: 0px. The extra properties and values for height, font

and line-height are used to make this clearing trick work in all browsers. Wow, our first hack!
Since a div has no semantic meaning and we set the height is zero, this div will not have any

impact on your content or spacing of elements. This will let us use this class anytime we want to

clear floats, whether they are right or left. (Although sometimes you will need to be very specific
if you don’t want to break a layout that has other floats.)

Place your cursor after the heading level one text and from the Toolbar Menu select

Insert>Layout Object>Div tag. In the dialog box, choose Before end of tag, select <div
id="wrapper"> and select Class: clear and press OK.

Then immediately press delete to get rid of the extra placeholder text that DW put in this new
div. Now see that the container div wrapper now completely contains the floated element and

the background color and border extends around the content as desired.

There are other ways to accomplish the desired result and may be used if better suited to your
overall layout, but they may have undesired effects in some browsers:

Remove the extra div tag in the code view.
o Add a float to the container. Create the following rule or add these properties to your

container id rule (replace wrapper with your container name. Choose float:right or float:left

depending on your layout, and set a width that is appropriate):
 #wrapper {float:left;

width: 100%;}
Check it in the browser. Then Undo (CMD or CTRL Z)

o Add overflow:auto to the container. Create the following rule or add these properties to your

container id rule (replace wrapper with your container name and set a width that is

appropriate):
#wrapper {overflow:auto;

width: 100%;}
For detailed explanations and solutions go to:
http://www.complexspiral.com/publications/containing-floats/

http://www.ejeliot.com/blog/59

http://css.maxdesign.com.au/floatutorial/

With your cursor at the end of the heading level one, insert two more short paragraphs of

Loreum Ipsum text and you will see that once the block elements are past the bottom of the

floated element, we see the normal behavior of starting the new block at the left and the clearing
div would no longer be necessary as long as the text or other content extended beyond the

floated element.

Practice Floats

Open float2.html There are nine images inside individual divs. Since the divs are block

items, they naturally stack up starting a new row for each div and we can observe how floated

block items work. Now add the css style .floatright to the first image, save and preview in

the browser. Now change the style for the first image to .floatleft. Do this again for the second

and third image. Go ahead

and change the img element
to have the property float:left,

so that all the images will

automatically float to the left.
Preview in the browser and

note that if you change the

window size, the images will

drop down to the next row
when there is not enough

room to the left. Return to

Dreamweaver and in design
view, make the third image

taller by simply selecting the

image and dragging the resize

handles down to increase the
size by about 20 pixels. Save and preview in the browser again. Notice that the images

following the now taller 3rd one do not go all the way to the window left edge, but hang up on the

bottom of the taller image and then only after the images "clear" this taller image in the next row,
do they go all the way to edge again.

Creating Multi-Column Pages with Floats
Open right-left-col.html. The document already has some semanticly structure html content.
Notice that there are 4 divisions; container, nav, sidebar2 and maincontent. We want to layout
the page with the nav on the left, sidebar2 on the right and maincontent in the middle. If we
preview the page in Firefox, we will notice that the page is not centered. Add the normal
centering rules, margins right and left to auto. Note that DW has written the shortcut for the
margins as margin: 0 auto, which stands for top and bottom are zero and right and left are auto.

Internet Explorer 6 does not honor this property, so the easy way is to add a slight hack and tell
the body to center text (text-align: center). Add this property and value to the body rule. But now
all of our text is centered, probably not the look we want. Since we have a #container div that
wraps all of our content, we can change it back to left aligned, selecting the #container rule and
adding text-align:left to override the body property for all of our content. Isn’t it exciting to make
our second hack! Gotta’ love those browsers.

Now we are going to make some columns. In the CSS Panel select the #nav selector rule and in
the CSS Properties below, add a new property for float: left and since it is floated, it should have
a width. Set it for 170px.

Now choose the CSS selector rule for #sidebar2 and set it to float: right and set the width for
170px.

That takes care of our two side columns, but notice that the central #maincontent is spilling out
below the to side columns. This is because it is wrapping around the floated divs. In order to give

the appearance that this content is in a separate column, regardless of how long the side columns
or the maincontent are, we add margin left and right to keep the maincontent in a narrower
column. Select the #maincontent rule and add the property margin: 0 200px to set the top and
bottom to zero margin and the left and right to 200px margins (20 + 170 + 10). If you hover near
the edge of the maincontent in the design view to get a pink border and then click, Dreamweaver
will “visualize the margins.

If you wish to change the position of the content, you can simply go to the rule for #nav and
#sidebar2 and change their float values. Notice that we didn’t set a width on the center
#maincontent. If we want this content to be liquid and have more room if the browser viewport is
wider, we can change the #container from a fixed width to a percent. Select the #container and in
the Box category, set the width to 80%.

Source Order and Positioned Content
One advantage of positioning with css is that the order of the content in the html can be

organized logically, with say, the main content first and then the sidebar; navigation next and

site info usually placed in the footer last. Yet the designer can visually organize the information
in a variety of ways on screen, so that the navigation appears first on the left or top, and content

below or to the right. Open source-order.html. The four divisions are inside a container

wrap for easy viewing, and as you can see in the design view, the order is content, nav, sidebar,

and last siteinfo. We want our nav to appear in the left column, then our content in the middle

and sidebar on the right. The site info should be below all 3 columns and last on the web page.

To accomplish this visual order, we do not change the html, except to add a wrapper around the

content and nav divs so that we can shift them with floats. In design view select all the content

in the first two divisions,
starting with "Right floated

content" and ending with

"Link 3". On the Toolbar
Menu select Insert>Layout

Objects>Div tag and

choose Wrap around
selection and select class

.floatwrapper that has

already been defined. You

will see a red border
defining the edges of this

container. We are going to

float the content right and
the nav left to get our first

two columns positioned.

Uncomment these two properties in the code in the head for the rules .containter and .nav. Now

we want to float the sidebar to the right of the floatwrapper content to position it on the right side

of our layout. Uncomment the float: right property for the .sidebar rule in the head. The .siteinfo

rule already has the property clear:both to allow it to clear both the right and left floats in our
previous columns.

Even more powerfully we can make a few changes to reposition the two outside columns. In the

CSS panel, change the .floatwrapper to float: right. Change the .nav column div to float:

right, change the .content column div to float: left and finally change the .sidebar to

float:left. We have rearranged our visual positions without touching the html!

