

ii The Art & Science of CSS The Art & Science of CSS iii

The Art & Science Of CSS
Thank you for downloading this sample chapter of The Art & Science Of CSS, published

by SitePoint.

This excerpt includes the Summary of Contents, Information about the Author, Editors and

SitePoint, Table of Contents, Preface, one chapter from the book (Forms), and the index.

We hope you find this information useful in evaluating this book.

For more information or to order, visit sitepoint.com

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/
http://www.sitepoint.com/launch/d8431a/

ii The Art & Science of CSS The Art & Science of CSS iii

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

iv The Art & Science of CSS The Art & Science of CSS v

Copyright © 2007 SitePoint Pty. Ltd.

Expert Reviewer: Dan Rubin Production: BookNZ (www.booknz.co.nz)

Expert Reviewer: Jared Christensen Managing Editor: Simon Mackie

Technical Editor: Andrew Krespanis Technical Director: Kevin Yank

Editor: Hilary Reynolds Index Editor: Max McMaster

Cover Design: Alex Walker

Printing History
First Edition: March 2007

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system,

or transmitted in any form or by any means, without the prior written permission of the

publisher, except in the case of brief quotations cited in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information

herein. However, the information contained in this book is sold without warranty,

either express or implied. Neither the authors and SitePoint Pty. Ltd., nor its dealers or

distributors, will be held liable for any damages to be caused either directly or indirectly

by the instructions contained in this book, or by the software or hardware products

described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses

the names only in an editorial fashion and to the benefit of the trademark owner with no

intention of infringement of the trademark.

Published by SitePoint Pty. Ltd.

424 Smith Street Collingwood

VIC Australia 3066.

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9758419-7-6

Printed and bound in the United States of America

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

iv The Art & Science of CSS The Art & Science of CSS v

About the Authors
Cameron Adams has been adding to the Internet for over seven years and now runs

his own design and development business. He likes to combine the aesthetic with the

technological on his weblog, http://www.themaninblue.com/, which contains equal parts

of JavaScript, design, and CSS.

Jina Bolton, interactive designer, holds a Bachelor of Fine Arts degree in Computer Arts

and Graphic Design from Memphis College of Art. In addition to being featured in CSS

Professional Style and Web Designing magazine, Jina consults for various agencies and

organizations, including the World Wide Web Consortium. She enjoys traveling, is learning

Italian, and considers herself a sushi enthusiast.

David Johnson is one of those evil .NET developers from Melbourne, Australia. He is

the senior developer at Lemonade, http://www.lemonade.com.au/, and his role includes

C# programming, database design using SQL Server, and front-end development using

XHTML and CSS. He makes up for his evil deeds by being a firm believer in web standards

and accessibility, and forcing .NET to abide by these rules. His favourite candy is Sherbies.

Steve Smith lives with his wife, son, and a few miscellaneous animals in South Bend,

Indiana, USA. As well as maintaining his personal web site, http://orderedlist.com/, Steve

works as an independent web designer, developer, and consultant. He does his best to

convince his clients and friends that web standards should be a way of life.

Jonathan Snook has been involved with the Web since ’95, and is lucky to be able to

call his hobby a career. He worked in web agencies for over six years and has worked

with high-profile clients in government, the private sector, and non-profit organizations.

Jonathan Snook currently runs his own web development business from Ottawa, Canada,

and continues to write about what he loves on his blog, http://snook.ca/.

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

vi The Art & Science of CSS The Art & Science of CSS vii

About the Expert Reviewers
Dan Rubin is a published author, consultant, and speaker on user interface design,

usability, and web standards development. His portfolio and writings can be found on

http://superfluousbanter.org/ and http://webgraph.com/.

Jared Christensen is a user experience designer and the proprietor of http://jaredigital.com.

He has been drawing and designing since the day he could hold a crayon; he enjoys elegant

code, walks in the park, and a well-made sandwich.

About the Technical Editor
Andrew Krespanis moved to web development after tiring of the instant noodles that

form the diet of the struggling musician. When he’s not diving headfirst into new web

technologies, he’s tending his bonsai, playing jazz guitar, and occasionally posting to his

personal site, http://leftjustified.net/.

About the Technical Director
As Technical Director for SitePoint, Kevin Yank oversees all of its technical publications—

books, articles, newsletters, and blogs. He has written over 50 articles for SitePoint, but is

best known for his book, Build Your Own Database Driven Website Using PHP & MySQL.

Kevin lives in Melbourne, Australia, and enjoys performing improvised comedy theater

and flying light aircraft.

About SitePoint
SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our books, newsletters, articles,

and community forums.

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

vi The Art & Science of CSS The Art & Science of CSS vii

Table of Contents

CHAPTER 1 Preface . viii

CHAPTER 1 Headings . 1

Hierarchy . 2

Identity . 4

Image Replacement . 7

Flash Replacement . 12

Summary . 21

CHAPTER 2 Images . 23

Image Galleries . 24

Contextual Images . 47

Further Resources . 64

Summary . 65

CHAPTER 3 Backgrounds . 66

Background Basics . 67

Case Study: Deadwood Design . 69

The Future of Backgrounds . 83

Summary . 85

CHAPTER 4 Navigation . 86

The Markup . 87

Basic Vertical Navigation . 88

Basic Horizontal Navigation . 95

Tabbed Navigation . 98

Variable-width Tabs . 102

Advanced Horizontal Navigation . 108

Summary . 116

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

viii The Art & Science of CSS The Art & Science of CSS ix

CHAPTER 5 Forms . 117

Accessible Form Markup . 118

Form Layout . 121

Required Fields and Error Messages . 147

Summary . 152

CHAPTER 6 Rounded Corners . 154

Flexibility . 155

Experimenting with these Techniques . 179

Summary . 179

CHAPTER 7 Tables . 181

The Structure . 182

The Styling . 191

Table Elements in Action . 196

Using JavaScript . 202

The Future . 206

Summary . 208

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

viii The Art & Science of CSS The Art & Science of CSS ix

Preface
In the early days of CSS, many web designers associated it with boring, square boxes

and thin borders. “CSS is ugly!” they would cry. It took projects such as CSS Edge1 and

CSS Zen Garden2 to show the web design world that not only could CSS designs achieve

the same aesthetic qualities of their table-based ancestors, but, furthermore, that new

and interesting design possibilities were available. Not to mention how much more

maintainable the markup is—imagine how very, very happy you’ll be if you never again

have to stare down the barrel of another day’s worth of table hacking!

Each chapter of this book will teach you how to style common web site components

through practical examples. Along the way, you’ll learn many handy techniques for

bringing complex designs to life in all modern browsers without needing to resort to messy

hacks or superfluous presentational markup. Neither accessibility nor markup quality

should be sacrificed to make tricky designs easier to achieve, so the exercises you’ll find

in this book all use examples of best practice XHTML and CSS. Each chapter progressively

builds upon the skills you’ll have acquired in previous exercises, giving you a practical

toolkit of skills with which to express your own creative ideas.

Who Should Read this Book?
This book is ideal for anyone who wants to gain the practical skills involved in using

CSS to make attractive web sites, especially if you’re not the type who likes to learn

by memorizing a formal specification and then trying to work out which browsers

implemented it completely (does anyone enjoy reading specifications?). The only

knowledge you’ll need to have is some familiarity with HTML. This book will give

designers the skills they need to implement their ideas, and provides developers with

creative inspiration through practical examples.

What’s in this Book?
This book contains seven chapters that engage with the fundamental elements of the

web page—headings, images, backgrounds, navigation—as well as applied styles such as

those used in forms, rounded corners for content boxes, and tables. CSS is inherent in the

approaches we’ll use in the exercises presented here. These exercises will encourage you to

address the questions of art and science in all the design choices you make, as a means to

1 http://meyerweb.com/eric/css/edge/
2 http://csszengarden.com/

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

x The Art & Science of CSS The Art & Science of CSS xi

create designs that are as beautiful as they are functional. Throughout the book, therefore,

considerations of usability are always paramount—both in terms of users of mainstream

browsers and those employing assistive technology.

 Chapter 1: Headings
 Simultaneously conveying the content and the identity of your site, headings are truly

the attention-grabbers of your web page. With only a handful of fonts being available

across all browsers, CSS can help you style headings that stand out from the crowd. In

this chapter, Cameron Adams will show you how to use image and Flash replacement

to gain unlimited creativity in designing headings, while retaining the page’s

accessibility across all browsers.

 Chapter 2: Images
 Images are the windows to your web page’s soul. Jina Bolton will teach you stunning

ways to display your images as she walks you through a number of attractive examples.

You’ll learn to create a photo album, as well as to successfully place introductory and

in-content images within your pages. The techniques of applying borders, padding,

typography, and colors to best present your work are covered in detail in this chapter.

You’ll also discover effective ways to style those all-important captions.

 Chapter 3: Backgrounds
 You’ve probably already found that CSS has significantly affected the way you use web

page backgrounds. Here, David Johnson will explain the properties you’ll use on a daily

basis to transfer your design visions into light-weight markup and CSS. You’ll then

work through a case study for a fictional project, in which you’ll create a great-looking

design that’s well supported by all modern browsers. Finally, we’ll look to the future to

predict the new background capabilities that CSS 3 will bring!

 Chapter 4: Navigation
 Navigation is crucial to your users’ experience of your web site. Steve Smith will

reveal the secrets of successful navigation through a case study involving a fictional

design client. You’ll build both basic and advanced applications of the main

navigation styles in use today, including horizontal, vertical, and tabbed navigation

menus, and discover how you can use CSS styling to make your navigation both

beautiful and usable.

 Chapter 5: Forms
 Forms are the quiet achievers of the web page. In this chapter, Cameron Adams will

help you ensure that your forms are available to all users—even those employing

assistive technology. You’ll learn how to create an attractive form that will allow for

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

x The Art & Science of CSS The Art & Science of CSS xi

the correct and effective labeling, grouping, layout, and styling of your form elements.

Forms needn’t be just a tedious necessity—as you’ll learn in this chapter, they can be

presented in a way that enhances your site’s overall impact.

 Chapter 6: Rounded Corners
 Those sharp corners on HTML content boxes have been the bane of many a web

designer’s life for years. But CSS has changed all that, as Steve Smith explains.

Flexibility is the key—horizontal, vertical, or even a combination of both forms—

to creating rounded corners for your boxes with some straightforward styling.

The achievement of rounded corners does hold traps for the unwary, including

unsympathetic browsers, but you’ll find that taking the few small precautions detailed

here will help you to avoid them.

 Chapter 7: Tables
 Tables have gained a new lease of life in the CSS era—while they’ve finally been freed

from misuse as a layout element, they retain enormous potential as presenters of data.

Jonathan Snook will demonstrate how you can use CSS to create exciting, colorful

tables, which will work successfully across browsers. You’ll also be invited to envision

the future, in which the advent of the wide use of CSS 3 will create even more scope

for creative tables.

This Book’s Web Site
Located at http://www.sitepoint.com/books/cssdesign1/, the web site supporting this book

will give you access to the following facilities.

The Code Archive
The code archive for this book, which can be downloaded from http://www.sitepoint.

com/books/cssdesign1/code.php, contains the source code and images for each and every

example in this book.

Updates and Errata
The Corrections and Typos page on the book’s web site, at http://www.sitepoint.com/

books/cssdesign1/errata.php, will always have the latest information about known

typographical and code errors, and necessary updates for changes to technologies.

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

xii The Art & Science of CSS

The SitePoint Forums
While we’ve made every attempt to anticipate any questions you may have, and answer

them in this book, there is no way that any publication could cover everything there is to

know about designing with CSS. If you have a question about anything in this book, the

best place to go for a quick answer is SitePoint’s Forums, at http://www.sitepoint.com/

forums/—SitePoint’s vibrant and knowledgeable community.

The SitePoint Newsletters
In addition to books like this one, SitePoint offers free email newsletters. The SitePoint

Tech Times covers the latest news, product releases, trends, tips, and techniques for all

technical aspects of web development. The long-running SitePoint Tribune is a biweekly

digest of the business and moneymaking aspects of the Web. Whether you’re a freelance

developer looking for tips to score that dream contract, or a marketing major striving to

keep abreast of changes to the major search engines, this is the newsletter for you. The

SitePoint Design View is a monthly compilation of the best in web design. From new

CSS layout methods to subtle Photoshop techniques, SitePoint’s chief designer shares his

years of experience in its pages. Browse the archives or sign up to any of SitePoint’s free

newsletters at http://www.sitepoint.com/newsletter/.

Your Feedback
If you can’t find your answer through the forums, or you wish to contact us for any other

reason, the best place to write is books@sitepoint.com. SitePoint has a well-manned email

support system set up to track your inquiries, and if the support staff are unable to answer

your question, they send it straight to us. Suggestions for improvement as well as notices of

any mistakes you may find are especially welcome.

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

xii The Art & Science of CSS

Forms. Is there any other word that strikes as much fear into

the hearts of grown web designers?

I think that the reputation of forms as an untamable, ugly

necessity has arisen for two reasons:

 Form elements are derived from native operating system

widgets, which makes them particularly difficult to style.

 Forms are often critical to the function of a web

site—they’re most often employed as search boxes,

inquiry forms, or shopping cart checkouts—and need to

function as smoothly as possible in order to meet user

expectations.

However, it’s still possible to incorporate both these points

into designing a form tailored to the style of the rest of

your site. This chapter will explore the ways in which you

can design a great-looking form, and provide you with the

necessary code, which we’ll work work through together.

5 Forms

xiv The Art & Science of CSS Forms 118

Accessible Form Markup
Before we can begin to look at form layout, we need to craft some really solid markup that

will provide us with a framework to which we can add some style.

Forms represent the one area of your web site where you absolutely must commit time

and energy to ensure user accessibility. Even though forms represent some of the most

complex interactions that can occur on a web page, in many cases these interactions are

only represented visually—via the proximity of a form element to its label, or grouping by

borders and background colors. Users of assistive technology such as screen readers may

not be able to see these visual clues, so it’s vital that you support these users by ensuring

accessibility. The key concept behind providing an accessible form is to have descriptive

labeling of all its sections and input elements.

In particular, this means the proper usage of two elements: label and legend.

There’s also an improperly held belief that the only way you can guarantee that a form

displays properly is by using tables. All of the code reproduced here for forms is standards-

based, semantic markup, so you’ve got no excuse for relying on tables now!

Labeling Form Elements
No matter how you style a form element and its label, it generally conforms to a certain

pattern:

 the form element itself

 a text label for the element

 a connection between the element and its textual description

This connection is made either through visual alignment, visual grouping, or some other

visual indicator. In Figure 5.1, you can see that the form on the left makes a connection

between the field element and its label purely through alignment, whereas the form on the

right indicates a more explicit connection via the use of color.

Figure 5.1: Visual connections in forms

When accommodating users of assistive technology in the creation of your forms, there’s

one main question to consider. How can a user who’s unable to see a web page create the

connection between a form element and its text label, without the visual cues of proximity

or grouping?

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

119 The Art & Science of CSS Forms xvii

The answer is the label element. label is a special element applied to a form element to

allow its textual description to be semantically linked to the element itself, so any assistive

technology such as a screenreader can read out that text when it encounters its partner

form element.

In order to use a label, wrap the textual description in a pair of labellabel tags, then add

a for attribute to the label. The value of the for attribute should be the id of the form

element with which you want to create a connection:

<label for="firstName">Fi rst name</ label>
<input id="firstName" name="firstName" type="text" />

Now, when a screenreader encounters the firstName field, it’ll also read out the text “First

name” to the user, so he or she will know what to type into that field. The label doesn’t

have to be near the form element and neither of them have to be in any particular order—

as long as the label’s for attribute contains a valid reference, the relationship will be

understood. However, having the label right before the form element in the source order

generally makes the most semantic sense.

A label should be applied to any form element that doesn’t automatically include

descriptive text, such as:

 checkboxes

 radio buttons

 textareas

 text fields

 select boxes

Submit buttons and submit images don’t require label elements, because their descriptions

are contained, respectively, in their value and alt attributes.

Of course, you can easily style the text inside the label using CSS, so you can format the

label text in your forms in the same way as if you were using a span, p, or div, but using a

label has the benefit of being much more accessible than any of those elements.

Grouping Related Elements
legend goes hand in hand with fieldset. In fact, the only element of which a legend can be a

child is a fieldset. A fieldset groups a series of related form elements. For instance, “street

address,” “suburb,” “state,” and “zip code” could all be grouped under “postal address.”

You could create a fieldset that groups all of those elements, and give it an appropriate

legend to describe that group:

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

xvi The Art & Science of CSS Forms 120

<form act ion="example.php">
 <fieldset>
 <legend>Postal Address</ legend>
 <label for="street">St reet address</ label>
 <input id="street" name="street" type="text" />
 <label for=" suburb">Suburb</ label>
 <input id="suburb" name="suburb" type="text" />
 <label for="state">State</ label>
 <input id="state" name="state" type="text" />
 <label for="postcode">Postcode</ label>
 <input id="postcode" name="postcode" type="text" />
 </fieldset>
</ form>

Now that legend is associated with all those form elements inside the fieldset, when a

person using a screenreader focuses on one of the form elements, the screenreader will also

read out the legend text: “Postal Address; Suburb.”

The benefit of the screenreader specifying both legend and fieldset becomes apparent when

you have two groups of elements that are very similar, except for their group type:

<form act ion="example.php">
 <fieldset>
 <legend>Postal Address</ legend>
 <label for="street">St reet address</ label>
 <input id="street" name="street" type="text" />
 <label for=" suburb">Suburb</ label>
 <input id="suburb" name="suburb" type="text" />
 <label for="state">State</ label>
 <input id="state" name="state" type="text" />
 <label for="postcode">Postcode</ label>
 <input id="postcode" name="postcode" type="text" />
 </fieldset>
 <fieldset>
 <legend>Del ivery Address</ legend>
 <label for="del iverySt reet">St reet address</ label>
 <input id="del iverySt reet" name="del iverySt reet"

 type="text" />
 <label for="del iverySuburb">Suburb</ label>
 <input id="del iverySuburb" name="del iverySuburb"

 type="text" />
 <label for="del iveryState">State</ label>
 <input id="del iveryState" name="del iveryState"

 type="text" />
 <label for="del iveryPostcode">Postcode</ label>
 <input id="del iveryPostcode" name="del iveryPostcode"

 type="text" />
 </fieldset>
</ form>

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

121 The Art & Science of CSS Forms xix

As Figure 5.2 shows, with the fieldset’s legend elements in place it’s quite easy to

determine visually which fields fall under which group, even on an unstyled form.

Figure 5.2: Unstyled form using fieldset and legend elements for grouping

But, you ask, couldn’t the same visual effect be achieved using h1 elements instead of

legend elements?

Yes. However, the point of using legend is that without proper semantic grouping and

labeling, a screenreader user would become confused as to why he or she was required

to enter “Address 1” twice. With the legend included, the user will know that the second

“Address 1” actually belongs to another group—the group for the delivery address.

So, by combining label and legend, we give visually impaired users the ability to navigate and

fill in our forms much more easily. By using this combination as the basic structure for your

forms, you’ll ensure that not only will they look fantastic, but they’ll be accessible as well!

Form Layout
There are several different ways in which you can lay out a form. The method you choose

depends upon how long the form is, its purpose, how often it will be used by each person

who has to fill it out, and, of course, the general aesthetics of the web page.

It’s generally considered most efficient to have one form element per line, with the lines

stacked sequentially one on top of the other, as most Western-language web pages are

designed to scroll vertically rather than horizontally. This allows users to follow the path

to completion easily and focus their attention on entering one piece of data at a time.

For each form element in a left-to-right reading system, it’s logical to position the

corresponding label in one of three ways:

 directly above the form element

 in a separate left column, left-aligned

 in a separate left column, right-aligned

Each of these approaches has its own advantages and its own look, so consider these

options when you’re deciding how to lay out a form for a particular page.

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

xviii The Art & Science of CSS Forms 122

Labels that are positioned directly above a form element have been shown to be processed

most quickly by users. The compact grouping between label and element reduces eye

movement by allowing the user to observe both simultaneously.1 However, this type of

positioning is rather utilitarian, and isn’t the most aesthetically pleasing layout. It also

has the disadvantage of occupying the most vertical space of the three layouts, which will

make a long form even longer. Generally, top-positioned labels work well for short forms

that are familiar to the user, such as the comment form in Figure 5.3.

Figure 5.3: Labels positioned above form elements2

Labels that are positioned in a column to the left of the elements look much more

organized and neat, but the way in which the text in those labels is aligned also affects the

usability of the form.

Right-aligning the text creates a much stronger grouping between the label and the element.

However, the ragged left edge of the labels can make the form look messy and reduces

the ability of users to scan the labels by themselves.3 In a left-aligned column, the labels

instantly become easier to scan, but their grouping with the associated form elements

becomes weaker. Users have to spend a little more time correlating the labels with their

elements, resulting in slower form completion. An example of left-aligned labels can be

seen in Figure 5.4.

1 http://www.uxmatters.com/MT/archives/000107.php
2 http://dressfordialogue.com/thoughts/chris-cornell/
3 http://www.lukew.com/resources/articles/web_forms.html

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

123 The Art & Science of CSS Forms xxi

Figure 5.4: Labels positioned in a column and aligned left4

The right-aligned column layout shown in Figure 5.5 allows for quicker association

between label and element, so again it’s more appropriate for forms that will be visited

repeatedly by the user. Both layouts have the advantage of occupying a minimal amount of

vertical space.

Figure 5.5: Labels positioned in a column and aligned right5

4 http://www.themaninblue.com/contact/
5 https://www.linkedin.com/register/

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

xx The Art & Science of CSS Forms 124

Using the CSS
To create each of these different types of form layouts, we’ll use identical markup, but with

different CSS rules.

In our example, the HTML looks like this:

<form act ion="example.php">
 <fieldset>
 <legend>Contact Detai ls</ legend>

 <l i>
 <label for="name">Name:</ label>
 <input id="name" name="name" class="text" type="text" />
 </ l i>
 <l i>
 <label for="emai l">Emai l address:</ label>
 <input id="emai l" name="emai l" class="text" type="text" />
 </ l i>
 <l i>
 <label for="phone">Telephone:</ label>
 <input id="phone" name="phone" class="text" type="text" />
 </ l i>

 </fieldset>
 <fieldset>
 <legend>Del ivery Address</ legend>

 <l i>
 <label for="address1">Address 1:</ label>
 <input id="address1" name="address1" class="text"

 type="text" />
 </ l i>
 <l i>
 <label for="address2">Address 2:</ label>
 <input id="address2" name="address2" class="text"

 type="text" />
 </ l i>
 <l i>
 <label for="suburb">Suburb/Town:</ label>
 <input id="suburb" name="suburb" class="text"

 type="text" />
 </ l i>
 <l i>
 <label for="postcode">Postcode:</ label>
 <input id="postcode" name="postcode"

 class="text textSmal l" type="text" />
 </ l i>

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

125 The Art & Science of CSS Forms xxiii

 <l i>
 <label for="count ry">Count ry:</ label>
 <input id="count ry" name="count ry" class="text"

 type="text" />
 </ l i>

 </fieldset>
 <fieldset class="submi t">
 <input class="submi t" type="submi t"

 value="Begin download" />
 </fieldset>
</ form>

This HTML uses exactly the same fieldset-legend-label structure that we saw earlier in this

chapter. However, you should see one glaring addition: inside the fieldset elements is an

ordered list whose list items wrap around each of the form element/label pairs that we’re using.

The reason for this addition? We need some extra markup in order to allow for all of the

styling that we’ll do to our forms in this chapter. There are just not enough styling hooks

in the standard fieldset-label structure to allow us to provide robust borders, background

colors, and column alignment.

There are a number of superfluous elements that we could add to the form that would grant

us the extra styling hooks. We could move the form elements inside their label elements and

wrap the label text in a span, or wrap a div around each form element/label pair. However,

none of those choices would really contribute anything to the markup other than its presence.

The beauty of using an ordered list is that it adds an extra level of semantics to the

structure of the form, and also makes the form display quite well in the absence of styles

(say, on legacy browsers such as Netscape 4, or even simple mobile devices).

With no CSS applied and without the ordered lists, the rendered markup would appear as

in Figure 5.6.

Figure 5.6: Unstyled form without any superfluous markup

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

xxii The Art & Science of CSS Forms 126

Figure 5.7 shows how the unstyled form looks when we include the ordered lists.

Figure 5.7: Unstyled form that includes an ordered list inside each fieldset

I’m sure you’ll agree that the version of the form that includes ordered lists is much easier

to follow, and hence fill out.

NOTE Using Lists in Forms

If you’re vehemently opposed to the inclusion of an ordered list inside your form markup, you can easily
substitute it for some other wrapper element; all you need is one extra container around each form element/
label pair in order to style your forms any way you want.

Two other HTML oddities that you might have picked up on:

 Each form input has a class that replicates its type attribute, for example class=”text”

type=”text”. If you need to style a form element, this is a handy way of accessing

it, given that Internet Explorer 6 and earlier don't support CSS attribute selectors

(although Internet Explorer 7 does, so you mightn’t need to include these extra classes

in the near future).

 The form submit button is contained inside its own fieldset with class=”submit.” You’ll

frequently have multiple actions at the end of a form, such as “submit” and “cancel.”

In such instances, it’s quite handy to be able to group these actions, and a fieldset does

this perfectly. If any styles are applied to normal fieldset elements, you’ll most often

want to have a different style for the fieldset surrounding these actions, so the class is

necessary to distinguish our actions fieldset. The fieldset and the input inside it both

have the same class name because the term “submit” makes sense for both of them, but

it’s easy to distinguish them in the CSS by preceding the class selector with an element

selector, as we’ll see below.

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

127 The Art & Science of CSS Forms xxv

Applying General Form Styling
There are a number of styles which we’ll apply to our forms, irrespective of which layout

we choose. These styles revolve mainly around the inclusion of whitespace to help

separate form elements and fieldset elements:

fieldset {

 margin: 1.5em 0 0 0;

 padding: 0;

}

legend {

 margin- lef t : 1em;

 color : #000000;

 font -weight : bold;

}

fieldset ol {

 padding: 1em 1em 0 1em;

 l ist -style: none;

}

fieldset l i {

 padding-bot tom: 1em;

}

fieldset .submi t {

 border-style: none;

}

The margin on the fieldset helps to separate each fieldset group from the others. All internal

padding is removed from the fieldset now, because later on it’ll cause problems when we

begin floating elements and giving them a width. Since padding isn’t included in the width,

it can break the dimensions of your form if you have a width of 100% and some padding.

Removing padding also helps to sort out inconsistencies between browsers as to the default

internal spacing on the fieldset.

To help define a visual hierarchy that clearly shows each label inside the fieldset grouped

under the legend, we give our legend elements a font-weight of bold. We also have to

replace the spacing that was removed from the padding on the fieldset, so we give the

legend a margin-left of 1em.

In order to turn off the natural numbering that would appear for the ordered list, we set

list-style to none on the ol, and thus remove any of the bullet formatting that normally

exists in such a list. Then, to recreate the internal spacing which we removed from the

fieldset, we give the ordered list some padding. No padding is put on the bottom of the list,

because this will be taken up by the padding of the last list item.

To separate each form element/label pair from each other pair, we give the containing list

item a padding-bottom of 1em.

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

xxiv The Art & Science of CSS Forms 128

Finally, to remove the appearance of the submit button as a form element group, we need

to take the borders off its surrounding fieldset. This step is achieved by targeting it using

the fieldset.submit selector and setting the border-style to none.

After applying all of this markup and adding some general page layout styles, we end up

with Figure 5.8—a form that’s beginning to take shape, but is still a bit messy.

Figure 5.8: Form with general styling applied, but no layout styles

Now we can go ahead and add in some layout styles!

Using Top-positioned Text Labels
Positioning labels at the top of their form elements is probably the easiest layout to

achieve, as we only need to tell the label to take up the entire width of its parent element.

As our form elements/labels are inside ordered list items (which are block elements), each

pair will naturally fall onto a new line, as you can see from Figure 5.9. All we have to do is

get the form elements and labels onto different lines.

This exercise is easily completed by turning the label elements into block elements, so that

they’ll occupy an entire line:

label {

 display: block;

}

It’s a simple change, but one which makes the form much neater, as shown in Figure 5.9.

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

129 The Art & Science of CSS Forms xxvii

Figure 5.9: Example form with text labels positioned at the top of each form element

Left-aligning Text Labels
When we create a column of text labels to the left of the form elements, we’ll have to do a

little bit more work than just to position them at the top. Once we begin floating elements,

all hell breaks loose!

In order to position the labels next to the form elements, we float the label elements to the

left and give them an explicit width:

label {

 float : lef t ;

 width: 10em;

 margin-r ight : 1em;

}

We also apply a little bit of margin-right to each label, so that the text of the label can

never push right up next to the form element. We must define an explicit width on the

floated element so that all the form elements will line up in a neat vertical column. The

exact width we apply will depend upon the length of the form labels. If possible, the

longest form label should be accommodated without wrapping, but there shouldn’t be

such a large gap that the smallest label looks like it’s unconnected to its form element. In

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

xxvi The Art & Science of CSS Forms 130

the latter scenario, it is okay to have a label width that is smaller than the longest label,

because the text will wrap naturally anyway, as you can see in Figure 5.10.

Figure 5.10: Text in floated label wraps automatically

Once we float the label, however, we run into a problem with its containing list item—the

list item will not expand to match the height of the floated element. This problem is highly

visible in Figure 5.11, where we’ve applied a background-color to the list item.

Figure 5.11: li containing floated label does not expand to match label height

One markup-free solution to ensuring a parent contains any of its floated children is to also

float the parent, so that’s what we’ll do:

left-aligned-labels.css (excerpt)

fieldset l i {

 float: left;
 clear: left;
 width: 100%;
 padding-bot tom: 1em;

}

If the list item is floated, it’ll contain all of its floated children, but its width must then be

set to 100%, because floated elements try to contract to the smallest width possible. Setting

the width of the list item to 100% means that it’ll still behave as if it were an unfloated block

element. We also throw a clear :left property declaration in there to make sure that we

won’t find any unwanted floating of list items around form elements. clear: left means

that the list item will always appear beneath any prior left-floated elements instead of

beside them.

However, once we float the list item, we find the same unwanted behavior on the fieldset—

it won’t expand to encompass the floated list items. So, we have to float the fieldset. This is

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

131 The Art & Science of CSS Forms xxix

the main reason that we removed the padding from fieldset earlier—when we set its width to

100%, any padding will throw out our dimensions:

left-aligned-labels.css (excerpt)

fieldset {

 float: left;
 clear: left;
 width: 100%;
 margin: 0 0 1.5em 0;

 padding: 0;

}

Where will this float madness end? Remain calm. It ends right here, with the submit

fieldset. Since it’s the last fieldset in the form, and because it doesn’t need as much special

CSS styling as the other fieldsets, we can turn off that floating behavior for good:

left-aligned-labels.css (excerpt)

fieldset .submi t {

 float: none;
 width: auto;
 border : 0 none #FFF;

 padding-left: 12em;
}

By turning off floating and setting the width back to auto, the final submit fieldset becomes

a normal block element that clears all the other floats. This means the form will grow to

encompass all the fieldset elements, and we’re back in the normal flow of the document.

None of the elements in the submit fieldset are floated, but we want the button to line up

with all of the other form elements. To achieve this outcome, we apply padding to the actual

fieldset itself, and this action pushes the submit button across to line up with all the text

fields. It’s best to have the button line up with the form elements, because it forms a direct

linear path that the user’s eye can follow when he or she is completing the form.

After all that floating, we now have Figure 5.12—a form with a column for the form labels

and a column for the form elements.

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

xxviii The Art & Science of CSS Forms 132

Figure 5.12: Example form with label elements organized in left-aligned column

Right-aligning Text Labels
With all that difficult floating safely out of the way, aligning the input labels to the right is a

breeze; simply set the text alignment on the label elements to achieve a form that looks like

Figure 5.13:

right-aligned-labels.css (excerpt)

label {

 float : lef t ;

 width: 10em;

 margin-r ight : 1em;

 text-align: right;
}

Figure 5.13: Example form with label elements organized in right-aligned column

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

133 The Art & Science of CSS Forms xxxi

And we’re done! Now you can take your pick of whichever form layout best fits your pages,

all by changing a little CSS!

Applying fieldset and legend Styles
It’s actually fairly rare to see a fieldset displayed in the default browser style. For some

reason people just don’t like the look of them, and I must admit those borders and legend

elements don’t fit into a lot of page designs. legend elements are one of the trickiest HTML

elements to style, but you can use a number of tricks to tame them, and there are some

great ways to differentiate fieldset elements using CSS.

Providing a background color for your fieldset elements helps to differentiate form content

from normal content and focuses the user’s attention on the form fields themselves.

However, it’s not as simple as just specifying a background-color.

Resolving Internet Explorer's Legends Issues
In a totally unexpected turn of events (yeah, right!) Internet Explorer handles legends

differently from other browsers. From experimentation, it seems that Internet Explorer

treats legend elements as if they’re inside the fieldset, while other browsers treat them

as if they’re outside the fieldset. I’m not saying that any browser’s wrong, but we have to

circumvent these differences somehow, and creating a separate IE style sheet seems to be

the best solution.

If you put a background-color on a fieldset with a legend, as in Figure 5.14, you can see the

problem all too clearly.

Figure 5.14: Browser rendering of fieldset elements with background color

The fieldset on the left shows how most browsers render a legend and fieldset with a

background color. The fieldset on the right shows how Internet Explorer renders it—the

background-color of the fieldset appears to extend beyond its border, stretching to fit the

height of the legend.

The way to avoid this problem is to accomodate Internet Explorer browsers with a separate

style sheet that uses conditional comments:

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

xxx The Art & Science of CSS Forms 134

<!--[i f l te IE 7]>
 <style type="text /css" media="al l">
 @impor t “css/fieldset -styl ing- ie.css";

 </style>
<![endi f]-->

This statement includes a style sheet for Internet Explorer 7 and earlier, as these are the

versions that currently display this deviant behavior. Any other browsers will ignore it. We

could use a style sheet that applies to any version of Internet Explorer—including those

released in the future—but the legend display difference may be corrected by then, so it’s

safest just to apply it to the versions we know for the present.

Inside that style sheet we use relative positioning on the legend to move it up to align with

the top of the fieldset:

legend {

 posi t ion: relat ive;

 lef t : -7px;

 top: -0 .75em;

}

fieldset ol {

 padding- top: 0 .25em;

}

In this case, the value we’ve given the legend’s top—0.75em—just happens to be the right

value to get the legend to align with the fieldset. It may vary depending on other styles we

might apply to the legend (such as margin and padding). This is quite a robust solution—

we’ve used relative units, so if users change the text size in their browsers, the position of

the legend will shift accordingly and still line up.

In addition to moving the top of the legend, we move it 7px to the left by applying a left

value of -7px. This step counters an Internet Explorer quirk—IE always shifts legends to the

right by 7px (regardless of text size), so we need to negate that shift to get the legend and

the label elements lining up neatly.

Because we’re moving the legend up relatively, it will create more space below the legend.

To counteract this space, we reduce the padding at the top of the ordered list by an

equivalent amount, changing it from the original value of 1em to 0.25em.

The last Internet Explorer fix is to relatively position the fieldset itself:

fieldset {

 posi t ion: relat ive;

}

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

135 The Art & Science of CSS Forms xxxiii

Without this rule, Internet Explorer produces some weird visual effects around the legend.

How weird? You can see exactly how weird in Figure 5.15.

Figure 5.15: Visual aberrations in Internet Explorer

We really need to avoid the IE aberrations we’ve seen, but we’re almost there—now we’ll

just set the position of the fieldset to relative to restore everything to normal.

Styling Legends and Fieldsets
In all browsers, legends will have some padding by default. The amount of padding varies

between browsers, so to have the legend lining up nicely with our labels we’ll eliminate

the padding in our main style sheet:

fieldset-background-color.css (excerpt)

legend {

 margin- lef t : 1em;

 padding: 0;
 color : #000;

 font -weight : bold;

}

The default border for fieldset elements is normally an inset border—which doesn’t match

some sites—so here we’re going to make it a flat, 1px border. In addition, we’ll add in a

background color that will make the fieldset elements stand out from the normal page

background, marking them as special areas:

fieldset-background-color.css (excerpt)

fieldset {

 float : lef t ;

 clear : both;

 width: 100%;

 margin: 0 0 1.5em 0;

 padding: 0;

 border: 1px solid #BFBAB0;
 background-color: #F2EFE9;
}

Generally speaking, we don’t want any borders or background color behind the submit

fieldset, so it’s quite easy to turn those off:

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

xxxii The Art & Science of CSS Forms 136

fieldset-background-color.css (excerpt)

fieldset .submi t {

 float : none;

 width: auto;

 border-style: none;
 padding- lef t : 12em;

 background-color: transparent;
}

Now we’ve got fieldset elements with a background color and a legend that lines up neatly

with all the other form elements, as in Figure 5.16.

Figure 5.16: fieldset elements with background-color set and adjustments made to legend

The cut-off of color behind the legend can sometimes look a bit abrupt, as you can see in

the magnified view of the legend shown in Figure 5.17.

Figure 5.17: Magnification of legend—cut-off of background color is apparent

This cut-off will become more pronounced if we use a fieldset background color that has

more contrast with the normal page background color. If you want to counteract this effect,

it’s possible to put a gradient background image into the fieldset that smoothly changes the

color from the page background color (white) to your chosen fieldset background color:

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

137 The Art & Science of CSS Forms xxxv

fieldset-background-image.css (excerpt)

fieldset {

 float : lef t ;

 clear : both;

 width: 100%;

 margin: 0 0 1.5em 0;

 padding: 0;

 border : 1px sol id #BFBAB0;

 background-color : #F2EFE9;

 background-image: url(images/fieldset_gradient.jpg);
 background-repeat: repeat-x;
}

That background-image rule will also be applied to our submit fieldset, so to keep a clean,

transparent background, we’ll also have to cancel the background-image on the submit fieldset:

fieldset-background-image.css (excerpt)

fieldset .submi t {

 float : none;

 width: auto;

 border-style: none;

 padding- lef t : 12em;

 background-color : t ransparent ;

 background-image: none;
}

See Figure 5.18—the form looks a lot smoother, no?

Figure 5.18: fieldset elements with background color and gradient images applied

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

xxxiv The Art & Science of CSS Forms 138

Changing the Default Fieldset Layout
Although fieldset and legend elements are the most accessible means of marking up form

groups, in the past a lot of people haven’t used them because they don’t like the default

styling that browsers impose on these elements—the border around the fieldset, the legend

intersecting the edge of the box. But it is possible to change this default layout and make

your forms a little less boxy.

Our first step is to push the fieldset elements together, eliminating the whitespace between

them. To do this, we could make the margin on the bottom of the fieldset elements zero, but

that actually ends up looking like Figure 5.19.

Figure 5.19: legend adding extra height so fieldset elements cannot touch

The legend at the top of the fieldset elements prevents the two fieldset elements from

joining.To circumvent this problem we can use some negative margin on the bottom of each

fieldset. This will “pull” up the lower fieldset so that it overlaps the upper fieldset, making

it look like they’re touching.

To prevent the bottom fieldset from overlapping any form elements, we should also add a

bit of padding to the bottom of the fieldset elements so that they’ve got some space to move

into:

fieldset {

 float : lef t ;

 clear : both;

 width: 100%;

 margin: 0 0 -1em 0;
 padding: 0 0 1em 0;
 border : 1px sol id #BFBAB0;

 background-color : #F2EFE9;

}

Moving the fieldsets up by 1em is enough to cover the gap between them, and the bottom-

padding of 1em counteracts the movement, making sure no form elements disappear beneath

fieldset elements.

A couple of visual tweaks are necessary when removing the whitespace. Without contact

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

139 The Art & Science of CSS Forms xxxvii

between the fieldset background color and the normal page background color, we no longer

need the gradient background image, so this has been left out.

The border-style has also been changed—we’re removing all borders, then replacing only

the top border:

fieldset {

 float : lef t ;

 clear : both;

 width: 100%;

 margin: 0 0 -1em 0;

 padding: 0 0 1em 0;

 border-style: none;
 border-top: 1px solid #BFBAB0;
 background-color : #F2EFE9;

}

With all the fieldset elements being joined together, the extra borders on the left and right

make the form look cluttered. With just a top border, we’ve created a much cleaner look, as

shown in Figure 5.20.

Figure 5.20: Joined fieldset elements

The other side effect of joining the fieldset elements together is that the legend now looks

out of place, balancing in between either fieldset. The way to solve this problem is to bring

the legend fully within the boundaries of its fieldset.

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

xxxvi The Art & Science of CSS Forms 140

Instinctively, you might use relative or absolute positioning on the legend to move it down

into the fieldset. However, Firefox resists any attempt to reposition the legend—it just

doesn’t move.

Unfortunately, the only way around this issue is to add a tiny bit more markup to our form.

By inserting a superfluous span into each of our legend elements, Firefox allows us to style

this and move the text down into the fieldset:

fieldset-alternating.html (excerpt)

<legend>
 Contact Detai ls
</ legend>

That span can be positioned absolutely and moved down into the fieldset using margin-top.

While we’re at it, let’s also increase the font-size of the legend text, to give it a bit more

prominence:

fieldset-alternating.css (excerpt)

legend span {

 posi t ion: absolute;

 margin- top: 0 .5em;

 font -size: 135%;

}

There’s actually an esoteric bug in some point releases of Firefox (Firefox 1.5.0.6 on

Windows XP, but not OSX, from what I’ve seen) that makes the absolutely positioned

span elements behave as if they were all positioned at the top of the form element. Giving

the legend elements a position of relative doesn’t seem to affect the span elements, so we

actually need to relatively position each of the fieldset elements and give the span elements

some explicit coordinates to sidestep this bug:

fieldset-alternating.css (excerpt)

fieldset {

 position: relative;
 float : lef t ;

 clear : both;

 width: 100%;

 margin: 0 0 -1em 0;

 padding: 0 0 1em 0;

 border-style: none;
 border-top: 1px solid #BFBAB0;
 background-color : #F2EFE9;

}

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

141 The Art & Science of CSS Forms xxxix

legend span {

 posi t ion: absolute;

 left: 0.74em;
 top: 0;
 margin- top: 0 .5em;

 font -size: 135%;

}

The 0.74em value of left actually matches the 1em padding we gave to the ordered list, due

to the fact that the span has a larger font-size.

Because we’re now specifying a left ordinate for the span, we also have to take the margin-

left off its parent legend, so that we don’t get a doubling of the spacing. Simply omit the

margin rule that we used previously:

fieldset-alternating.css (excerpt)

legend {

 padding: 0;

 color : #545351;

 font -weight : bold;

}

That bug’s now squashed!

As we’re moving the legend down into the fieldset, we need to make sure that the legend

won’t overlap any of the form elements, so let’s add a bit more padding to the top of our

ordered list:

fieldset-alternating.css (excerpt)

fieldset ol {

 padding: 3.5em 1em 0 1em;
 l ist -style: none;

}

Don’t forget to change the matching value inside our Internet Explorer-only style sheet:

fieldset-alternating-ie.css (excerpt)

legend span {

 margin- top: 1.25em;

}

fieldset ol {

 padding- top: 3 .25em;

}

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

xxxviii The Art & Science of CSS Forms xxxix

Internet Explorer has slightly different spacing on the legend element’s span, so let’s tweak

the margin-top value for that as well.

After all these changes, there’s one fieldset that looks a little out-of-place: the submit fieldset.

Because the submit fieldset doesn’t have a legend, the submit button will be moved up too

high, so we need to push it down a bit. This is done most easily by adding some padding to

the top of this fieldset only. Also, because the submit fieldset will overlap the fieldset above

it, we need to provide a solid background-color for the submit fieldset, otherwise the previous

fieldset’s background-color will shrow through. This means changing the background-color

value from transparent to whatever your normal page background-color is:

fieldset-alternating.css (excerpt)

fieldset .submi t {

 float : none;

 width: auto;

 padding-top: 1.5em;
 padding- lef t : 12em;

 background-color: #FFFFFF;
}

Previously, we also removed

borders from the submit fieldset,

but for this adjoining layout

we need the submit fieldset

to retain the top border that’s

applied to all fieldset elements.

We’ll just let that rule cascade

into the submit fieldset without

interference.

Once we’ve implemented all

those changes, the layout of

the form is complete. The form

appears as shown in Figure

5.21, but it requires some slight

aesthetic tweaks.

Because we’ve pushed all the

fieldset elements together, they

tend to run into one another

visually. Better distinction can be
Figure 5.21: All fieldset elements joined and legend elements moved inside boxesFigure 5.21: All fieldset elements joined and legend elements moved inside boxes

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

xl The Art & Science of CSS Forms xli

created between each fieldset by subtle alternation of the background-color elements in odd

and even fieldset elements. The only cross-browser method for achieving this is to add in a

new class for every second fieldset. This allows us to use a CSS selector to give those

fieldset elements a different background-color. I normally use a class of alt, but you can

use whatever you think is logical:

<fieldset>
…

</fieldset>
<fieldset class="al t">
…

</fieldset>
<fieldset>
…

</fieldset>
<fieldset class="al t">
…

</fieldset>
…

Then all you have to do is think of a different background-color:

fieldset-alternating.css (excerpt)

fieldset .al t {

 background-color : #E6E3DD;

}

And our final form with

alternating fieldset elements

looks like Figure 5.22!

Grouping Radio Buttons
and Checkboxes
There are two types of form

elements that are likely to be part

of their own subgroup. These are

checkboxes and radio buttons,

both of which can be used to

offer users multiple choices when

responding to a given question on

a form.

Figure 5.22: Alternating-color fieldset elementsFigure 5.22: Alternating-color fieldset elements

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

xl The Art & Science of CSS Forms 144

The way in which these form elements are laid out is slightly different to text fields, select

boxes or textareas. As they are part of their own subgroup, they should be included in a

nested fieldset inside the main fieldset. Using our background-image form as a starting point,

we can add some grouped elements inside the fieldset:

element-subgroups.html (excerpt)

<fieldset>
 <legend>Contact Detai ls</ legend>

 <l i>
 <fieldset>
 <legend>Occupat ion:</ legend>

 <l i>
 <input id="occupat ion1" name="occupat ion1"

 class="checkbox" type="checkbox" value="1" />
 <label for="occupat ion1">Doctor</ label>
 </ l i>
 <l i>
 <input id="occupat ion2" name="occupat ion2"

 class="checkbox" type="checkbox" value="1" />
 <label for="occupat ion2">Lawyer</ label>
 </ l i>
 <l i>
 <input id="occupat ion3" name="occupat ion3"element

 class="checkbox" type="checkbox" value="1" />
 <label for="occupat ion3">Teacher</ label>
 </ l i>
 <l i>
 <input id="occupat ion4" name="occupat ion4"

 class="checkbox" type="checkbox" value="1" />
 <label for="occupat ion4">Web designer</ label>
 </ l i>

 </fieldset>
 </ l i>

</fieldset>

The label for the subgroup actually becomes the legend for the nested fieldset, then each of

the checkboxes or radio buttons inside the fieldset receives its own label. The ordered list

structure that was put in place at the top level is replicated on this sub-level as well, more

for consistency than necessity although it can be very handy if you want to style some of

the sub-items.

The nested elements will inherit the styles that we put in place for top-level items, so we’ll

have to set some rules specifically for nested elements before they’ll display correctly:

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

145 The Art & Science of CSS Forms xliii

element-subgroups.css (excerpt)

fieldset fieldset {

 margin-bot tom: -2.5em;

 border-style: none;

 background-color : t ransparent ;

 background- image: none;

}

fieldset fieldset legend {

 margin- lef t : 0;

 font -weight : normal ;

}

fieldset fieldset ol {

 posi t ion: relat ive;

 top: -1.5em;

 margin: 0 0 0 11em;

 padding: 0;

}

fieldset fieldset label {

 float : none;

 width: auto;

 margin-r ight : auto;

}

Firstly, all the decoration on the nested fieldset is removed: background-color, background-

image, and border properties. Instead, it’s given a negative margin-bottom for the purposes of

some trickery we’ll see in a moment.

We want to make the legend look exactly like a normal label, so we remove the left margin

and also take off its bold font-weight. It’s important to be careful with the length of text

inside the legend, as most browsers won’t wrap the text in a legend. As a result, any width

you’ve set for the legend/text will be ignored, as the text will just continue on in one line,

possibly running over the rest of the form. We can overcome this limitation by exercising

a maximum character width for the legend text and sizing the form columns in em units, so

that with text-resizing the layout will scale accordingly.

NOTE Limitations of legend

Along with the inability of legend elements to wrap text, they are also resistant to width settings and text
alignment. This use of legend elements for grouping within fieldset elements is only possible for left-aligned
label elements, not right-aligned label elements.

We use the ordered list to position the nested form elements and label elements. Its left

margin pushes the entire container away from the left edge, equivalent to the amount

of margin given to form elements at the top level. Then, to bring the top of the form

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

xlii The Art & Science of CSS Forms 146

elements in line with the top of their respective legend, we need to position the ordered

list relatively and move it up by -1.5em. This will leave a large space at the bottom of the

list (where the list would have been if it wasn’t moved relatively), and this is where the

fieldset’s negative margin comes into play. The negative margin pulls up the content after

the fieldset by the same amount we moved the ordered list, making it look like there is no

empty gap. The padding that’s put on ordered lists at the top level isn’t needed here, so we

just set this property to 0.

The last thing we need to do is to revert our label elements to their native state. This means

we stop them from floating and set their width to auto. Because they’re inline elements,

they’ll now sit nicely next to the actual form elements—checkboxes or radio buttons.

There’s an additional change to make to the Internet Explorer-specific style sheet: to turn

off the negative relative position on nested legends. We don’t have to deal with background

colors on the nested fieldset elements, so the negative relative position isn’t needed here:

element-subgroups-ie.css (excerpt)

fieldset fieldset legend {

 top: 0;

}

Once those new styles have been created, we end up with the form that appears in Figure

5.23—a nested fieldset that lines up perfectly with all the other form elements and gives

the user a nice straightforward choice of options.

Figure 5.23: Nested subgroups of checkboxes and radio buttons

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

147 The Art & Science of CSS Forms xlv

Required Fields and Error Messages
There are often little extra bits of information that you want to convey on a form, and they

should be equally as accessible as the text label elements for the form element. In fact, to

ensure that they’re accessible, they should be included in the label itself. There are two

types that we’ll look at here: required fields and error messages.

Indicating Required Fields
The easiest and most accessible way of indicating the required fields on a form is to write

“required” after the form label. This addition is not only read out by screenreaders, but it

also means that an extra symbol key doesn’t need to be provided for visual users, as is the

case should you choose to mark required fields with an asterisk or other symbol.

To emphasize the importance of the information, we can add the text “required” inside an

em element, which also gives us a stylable element to differentiate the “required” text from

the label text:

required-fields.html (excerpt)

<label for="name">
 Name: requi red
</ label>

To give the em its own little place on the form, we can set it to display: block, and change

the appearance of the text:

required-fields.css (excerpt)

label em {

 display: block;

 color : #060;

 font -size: 85%;

 font -style: normal ;

 text- t ransform: uppercase;

}

Our “required” markers now look like this:

Figure 5.24: Form fields marked with textual “required” markers

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

xliv The Art & Science of CSS Forms 148

However, the asterisk, or star, has now become a common tool for marking required fields,

possibly due to its brevity. But it doesn’t have much meaning outside the visual context—

most screenreaders will read an asterisk character as “star.” So you end up with a label

being “Email address star”—a little confusing for the user.

For accessibility purposes, instead of including an actual asterisk character next to the form

label, it’s actually better to include an inline image of the asterisk, with alt text saying

“required.” This means that screenreader users will hear the word “required” instead of

just “star,” which is a lot more helpful. If you are using an image, you should include a key

at the top of the form to let visual users know exactly what it means.

We still want to emphasize the fact that the label is required, so we just replace the text

“required” inside the em element with the image of an asterisk:

required-fields-star1.html (excerpt)

<label for="name">
 Name: <img src="images/requi red_star .gi f"

 al t="requi red" />
</ label>

This replacement doesn’t actually need any styling; we can leave the em as an inline

element and the asterisk will appear directly next to the form label:

Figure 5.25: Inline asterisk marking required fields

Or, we can use some CSS to position the image absolutely and have it more closely

associated with the form element itself:

required-fields-star2.css (excerpt)

label {

 position: relative;

 float : lef t ;

 width: 10em;

 margin-r ight : 1em;

}

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

149 The Art & Science of CSS Forms xlvii

label em {
 position: absolute;
 left: 10em;
 top: 0;
}

When positioning the em absolutely, it’s important to position its parent (the label)

relatively, so that when we specify some coordinates for the em, they will be relative to the

label’s top-left corner. The star image should be positioned in the gap between the label

and the form element (created by the label’s right margin), so the value for the em’s left will

depend upon what we’ve set there. Setting the top value for the em is just a precaution in

case the image has wrapped onto a new line.

By taking this course of action, we’ll end up with a much more orderly series of “required”

markers, as shown in Figure 5.26.

Figure 5.26: Required fields marked with absolutely positioned image of a star, aligned against form elements

Handling Error Messages
Error messages are handled in almost the same way as required markers. In order to be read

out as a screenreader user places focus on the appropriate form element, they should form

part of the label:

error-fields1.html (excerpt)

<label for="name">
 Emai l : This must be a val id emai l address</st rong>
</ label>

The semantic strong element is used to enclose the error message, distinguishing it from a

required marker and giving it a stronger emphasis.

The styling is almost the same as it was for the textual “required” marker, except you might

want to change the color. A good strong red is suitably alarming:

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

xlvi The Art & Science of CSS Forms 150

error-fields1.css (excerpt)

label st rong {

 display: block;

 color : #C00;

 font -size: 85%;

 font -weight : normal ;

 text- t ransform: uppercase;

}

This styling produces a layout such as that shown in Figure 5.27.

Figure 5.27: Error messages included as part of label element, displayed underneath the label text

An alternative placement of the error message does exist, but it depends upon a couple of

prerequisites. The error message can be placed to the right of the form element as long as:

 The maximum width of any of the form elements is known.

 The error message is unlikely to wrap.

This placement involves the error message being positioned absolutely, so we must

know in advance how far to move the error. Absolute elements are outside the flow of the

document, so the other content will not adjust to accommodate the error message if it

starts wrapping. If the design can be reconciled with these two problems, then the CSS for

the job is:

error-fields2.css (excerpt)

label {

 position: relative;
 float : lef t ;

 width: 10em;

 margin-r ight : 1em;

}

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

151 The Art & Science of CSS Forms xlix

label strong {
 position: absolute;
 left: 27em;
 top: 0.2em;
 width: 19em;
 color: #C00;
 font-size: 85%;
 font-weight: normal;
 text-transform: uppercase;
}

Again, because the strong element is being positioned absolutely, its parent label must be

positioned relatively to allow us to move the error message relative to the label itself.

The width of the error message is dictated by the space following the form element. The

left is calculated by adding together the width of the form element, plus the width of the

label, plus any extra space we need in order to align the error message properly.

Figure 5.28 shows how it ends up when viewed in the browser.

Figure 5.28: Error messages as part of the label element, displayed using absolute positioning

NOTE Inaccessible Error Text Solutions

It is possible to position the error text to the right of the text fields by changing the source order of the HTML.
But this either:

 places the error text outside the label
 involves nesting the form element inside the label and placing the error text after the form element

Both of these solutions are inaccessible because screenreaders will most likely fail to read out the error message
when the form element is focused.

In conjunction with right-positioning the error messages, we can also include error icons,

to further highlight the problem areas on the form. The error icon is included in the HTML

with an appropriate alt attribute:

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

xlviii The Art & Science of CSS Forms 152

error-fields3.html (excerpt)

<fieldset>
 <legend>Contact Detai ls</ legend>

 <l i>
 <label for="name">
 Emai l : <img src="images/error_cross.gi f"

 al t="Error" /> This must be a val id emai l address

 </st rong>
 </ label>
 <input id="name" name="name" class="text" type="text" />
 </ l i>

We can now move it to the left of the form elements using absolute positioning. Because its

parent (the strong element) is already absolutely positioned, any movement we make will

be relative to that parent, so, effectively, we have to move it in a negative direction in order

to shift it back over to the left:

error-fields3.css (excerpt)

label st rong img {

 posi t ion: absolute;

 lef t : -16em;

}

This adjustment equates to the width of the form element, plus a little bit extra for spacing,

so we’ll get a nicely positioned icon, such as you can see in Figure 5.29.

Figure 5.29: Error messages displaying to right of form elements, in combination with error icon on left

Summary
Now that you’ve finished this chapter, you have no excuse for producing inaccessible

forms that use tables for positioning!

We’ve worked through the correct and effective labeling, grouping, layout, and styling

of form elements, anticipating and solving potential problems of compatibility and

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

153 The Art & Science of CSS Index li

accessibility along the way. With the code provided here you’ve got quite a few different

options for how you want your forms laid out, but there’s still more you can do by

combining and experimenting with different styles, form elements and layouts.

If there’s an underlying message of this chapter, it’s just to keep in mind that no matter

what you do, your forms have to be usable and accessible above everything else. Forms, at

the end of the day, are really all about your users being able to provide information and tell

you what they want as easily as possible.

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

ii The Art & Science of CSS The Art & Science of CSS 154

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

209 The Art & Science of CSS Forms xv

What's Next?
If you've enjoyed this chapter from The Art & Science of CSS, why not order yourself a

copy?

This gorgeous, full-color book brings together a team of talented CSS authors who will

show you how to use CSS to create designs that are not only standards-compliant, easy to

maintain, and highly accessible, but are also visually stunning.

In the rest of the book, you'll:

• Learn to style images creatively: create galleries, thumbnails, and captions.Learn to style images creatively: create galleries, thumbnails, and captions.

• Get creative with headings.Get creative with headings.

• Push the design envelope with innovative use of backgrounds.Push the design envelope with innovative use of backgrounds.

• Build beautiful navigation: vertical, horizontal, and tabbed.Build beautiful navigation: vertical, horizontal, and tabbed.

• Make your designs more fluid using fancy corner effects. Make your designs more fluid using fancy corner effects.

• Gain new-found respect for the table: make tabular data look amazing.Gain new-found respect for the table: make tabular data look amazing.

• And much more!And much more!

Each chapter was written by a renowned expert in the field and focuses on a particular

building block of CSS-based design. Together, they show you how to bring your designs to

life while retaining all the benefits of a fully standards-compliant web site.

The book's full-color layout and larger-than-normal size (8" x 10") help to show off the

techniques demonstrated in the book.

This book is ideal for you if you want to gain the practical skills required to use

CSS to make attractive web sites, especially if you're not the type who likes to learn

by memorizing a formal specification and then trying to work out which browsers

implemented it completely. The only knowledge you need to have is some familiarity with

HTML. This book will give designers the skills they need to implement their ideas, and

provides developers with creative inspiration through practical examples.

Order now and get it delivered to your doorstep!

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/
http://www.sitepoint.com/launch/d8431a/

l The Art & Science of CSS Index 210

A
A List Apart web site, 3–4
absolute positioning, 10

absolutely positioned parent,
152

choice between floats and, 91
image replacement and, 109
relatively positioned parent,

149, 151
span element, 140
tolerance of window resizing, 72

accessibility
error messages, 149, 151
forms, 118–121, 148
headings, 6, 12
navigation, 88
text as images and, 76, 148

addresses, billing and delivery,
120–121

Ajax, 206
album pages, 40–47
alpha transparency, 59–60
alternative text, 9–12, 151
Altoids homepage, 6
anchor elements, 110, 172
assistive technology. See screen

readers
asterisk symbol, 148, 157
attribute selectors, CSS, 126

B
background-attachment property,

68–69
background-color property, 67

alternating background colors,
143

fieldset elements, 133, 135–137,
143–145

JavaScript highlighter function,
204

transparency as default color, 72
variable-width tabs, 103

background colors, 16-17, 26, 192
background-image property,

67–68, 78
browser rendering on column

groups, 193
IE mouseover loss, 109

inheritance, 99
matrix navigation example, 111
page layout with rounded

corners, 164–165, 208
semi-transparent PNGs, 200
variable-width tabs, 103

background images
applying to tables, 194–196, 201
for body elements, 70–71
CSS 3 proposals, 83–85
fading to solid color, 201
with gradients, 61–62, 70–71,

136–137
resizable, 71
transparent, 59

background-origin property, CSS
3, 84–85

background-position property,
99–100, 104, 108

background properties
default position, 158
limited browser support, 154,

193
shorthand notation, 67

background-repeat property, 68, 71
background-size property, 84
behavior, 202
Binary Bonsai web site, 48
block-level elements, 172

styling hooks, 168, 171–172
unordered lists as, 87
width, 157

body text typefaces, 4–5
border-collapse property, 191–193
border conflict resolution guide,

192
border properties

browser rendering, in tables,
193

double borders, 52–53
extending images beyond

content, 48–53
fieldset elements, 135
image captions, 62, 64
inset- and outset-style borders,

28–29
removing unwanted borders,

89–90
variable-width tabs, 103

border-spacing property, 192

border-style property
browser rendering, 29
outset border-style, 62
overriding default fieldset

layouts, 139
rules attribute and, 184

border value, background-origin
property, 84–85

borders, table, browser rendering,
183–184

br tag, 32
breadcrumbs, 25
browser windows

sizing images to fit, 31
resizing, 70–72, 80–82, 74–75,

178
browsers.

See also Internet Explorer
background property support,

154, 194
border-style rendering, 29
colgroup element properties

and, 193
CSS-incapable, 76
fieldset element inconsistencies,

126
with Flash or JavaScript turned

off, 12–15
with images turned off, 9, 11,

112
with JavaScript turned off, 202
legend repositioning and, 140
support for background-origin

property, 84–85
support for background-size

property, 84
support for multiple

backgrounds, 84
table border rendering, 183
transparency support, 17, 59–60
width attribute rendering, 189

bullets, 34

C
calendars, tabular, 196–199
caption element, 185, 194, 197
caption-side property, 194
captions, 53–59, 63–64
Cartography Corner case study, 86

Index

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

211 The Art & Science of CSS Index liii

horizontal navigation, 95–116
logos, 165, 176
rounded page layout, 163
vertical navigation, 88–95

case studies. See Cartography
Corner; Deadwood Design

cellindex property, 204
cellspacing attribute, table

element, 183, 192
character metrics, 18–21
checkbox grouping, 143–146
child pseudo-classes, CSS 3, 206
classes

alternating background colors,
143, 199

replicating type attributes, 126
clear property, 30, 42, 130
col element, 188–191
colgroup element, 188–193
color, 5, 67 See also background

color
colspan element, 187
commenting out, 19
conditional comments, IE, 59, 133,

201
content value, background-origin,

84–85
contextual images, 47–64
Cooper Black typeface, 14
CSS 3 proposals

background images, 83–85
browser support, 84
:last-child pseudo-class, 175
table styling, 206–208

D
Deadwood Design case study,

69–83
browser window resizing, 80–81
design mockup, 70
introductory paragraph, 75–76
logo, 73–75
portfolio section, 77–82

definition lists, 156–167
degradation to usable text, 12, 14
display property, 104, 172–173
div elements, 55, 160, 168, 171
dl elements, 156–157
double borders, 52–53
download times, 9, 21, 78
drop shadows, 108, 180

E
elements See also wrapper

elements
replacing with sIFR.

replaceElement, 16–17
styling rounded corners, 168,

176

table structure, 182–191
em elements, 147, 169–170
empty-cells property, 192
error messages, 149–152
example web sites.

See also online resources
Altoids, 6
Binary Bonsai, 48
LinkedIn, 123
A List Apart, 3–4
Noodlebox, 12–13
NYTimes, 123
Rapha, 5–6
Subtraction, 2

F
feature boxes, 162, 174
fieldset element, 119–121

browser inconsistencies, 126
changing the default layout,

138–143
nested fieldsets, 144
styling, 133, 135–137
submit buttons, 126, 128
turning off floating, 131

filter property, IE, 59, 201
fixed-width table layouts, 195–196
Flash IDE alternative, 15
Flash replacement techniques,

12–21
flexibility

horizontal flexibility, 175–178
rounded corner solutions, 155
vertical and horizontal

flexibility, 167–175
float property

choice between absolute
positioning and, 91

IE whitespace bug workaround,
91

images, 30
label elements, 129
list items, 104–105
parent elements, 130

fluid layouts, 70, 176-178
fonts

See also typefaces
character metrics, 19–22
in navigation, 88
sIFR.replaceElement and, 16
sizing and weights for headings,

2–3
footers, tfoot element, 186
for attribute, label element and,

119
forms, 117–153

basic markup, 124–125
error messages, 149–152
general styling, 127–128
grouping form elements, 119–

121, 143–146
layout alternatives, 121–146
required fields, 147–149
types of form element, 119
visual connections within,

118–119
frame attribute, table element,

183–185

G
GIF files, 72, 78, 165, 200
gradient backgrounds, 61–62,

70–71, 136–137, 202
graphics applications, 70–71

H
headings, 1–22

accessibility advantages of
legend, 121

Deadwood Designs logo, 73–75
Flash replacement techniques,

12–21
hierarchies and, 1–4
identity and, 4–6
image replacement techniques,

7–11, 73–75
height property, 8–9, 157
hexadecimal colors, 67
hierarchies, 1–4, 127
highlight color, 5, 203–206
hooks. See styling hooks
horizontal flexibility, 175–178
horizontal navigation

advanced version, 108–116
basic version, 95–107
final style sheet, 97

:hover pseudo class, 105
hover styles

image page, 30
matrix navigation example,

111–112
tabbed navigation, 99–100,

105–106
vertical navigation, 90

HTML. See markup

I
icons, 151
id attribute

for attribute, label element and,
119

unordered list items, 87, 110,
112

id property, 93
identity, 4–6
image display page, 25–36
image galleries, 25–47

album pages, 40–47

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

lii The Art & Science of CSS Index 212

final style sheet, 44–47
online resources, 64–65
thumbnail pages, 36–40

image replacement techniques,
7–12

advanced horizontal navigation,
108–109

compared to Flash replacement,
21

logo in rounded corner layout,
165

text-indent image replacement,
7–9, 73–75, 165

images, 24–65
accessibility of, 148
captions for, 53–64
contextual images, 47–64
extending beyond page content,

48–53
as GIFs or PNGs, 72
image galleries, 25–47
as links, obscuring, 81–82
page download times, 9
portrait format, 35
preloading, 98
sizing, 31, 72
tabbed navigation, 98–99
text as, 75-76

inheritance, 99, 144, 172
inline-blocks, 105
inset-style borders, 28–29
Internet Explorer

background-attachment support,
59–60

background-image loss on
mouseover, 109

border properties rendering, in
tables, 193

border-spacing property, 192
border width workaround, 30
caption-side property, 194
CSS attribute selectors and

IE 6, 126
CSS cellspacing, 183
CSS 3 selectors and IE 7, 207
double margin bug, 104
empty-cells property, 192
frame attribute misinterpreted,

183
h1 expansion behavior, 8
:hover pseudo class access, 105
legend element rendering,

133–134
opacity property support, 201
separate style sheets for, 133,

141, 146
transparency support, 59–60,

201
whitespace bug, 90
width attribute rendering, 189
z-index property bug, 77

introductory images, 47–52
introductory paragraphs, 75–76

J
JavaScript, 12, 16–18, 202–208

L
label element, 118–119

auto width setting, 146
error messages within, 150–151
left-aligned labels, 122–123, 145
nested fieldsets, 144
positioning alternatives, 121
right-aligned labels, 123, 132–

133, 145
top-positioned labels, 122, 128

:last-child pseudo-class, CSS 3,
175, 207

layering
background-images and, 157–

158, 194
layout grids, 2
left-aligned labels, 122–123, 145
legend element, 119–121

changing the default layout,
138–143

styling, 133–135
letter-spacing property, 18–21
line-height property, 61, 159, 172
linear layouts, 2–3
linebreak element, 32
LinkedIn web site, 123
links, 21, 89
liquid layouts, 70, 175–178
list items, 90, 91, 103

See also ordered lists;
unordered lists

list-style property, 34, 127
logos, 73–75, 165, 176

M
margin property

changing for list items, 89
fieldset elements, 126, 142
floated images and captions, 61,

63, 104
images and thumbnails, 34
inset- and outset-style borders,

28–29
negative margins, 52, 138,

145–146
variable-width tabs, 104

margin-right property, 129
markup

adjusting character metrics,
18–21

importance of simplicity, 102
users with images disabled, 9

mouseover effects, 203–206
multiple backgrounds in CSS 3, 83

N
navigation, 86–116

graphic intensive version,
108–114

horizontal navigation, 95–116
pagination style navigation, 25,

32–36, 38
single include, 93
tabbed navigation, 98–107
thumbnail page, 39
vertical navigation, 88–95
You Are Here navigation, 92–95,

101–102, 106–107, 112–113
navigation matrix technique,

108–115
negative left value, IE legends, 134
negative margins, 52, 138, 145–146
negative text-indents, 7–9, 74
nested fieldsets, 144
nesting positioned elements, 10
non-semantic markup, 11, 83, 105,

171–172
Noodlebox web site, 12–13

O
offset captions, 63–64
online resources

forms layout, 122
image galleries, 64–65
precompiled sIFR, 15
spreadsheet-like functionality,

206
opacity property, 201
ordered lists

radio buttons and checkboxes,
144

turning off numbering, 127
wrapping form elements and

labels, 125–126, 145
outset borders, 62, 28–29
overflow property, 8, 11

P
p tags round images, 25
padding property

changing for list items, 89
extending images beyond

content, 48–53
fieldset elements, 126, 131, 134,

138
form element list styling, 127,

141
image captions, 61–62, 64
inset- and outset-style borders,

28–29

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

213 The Art & Science of CSS Index lv

legend elements, 135
between paragraphs, 162
round-edged boxes, 159, 162,

170
styling thumbnail navigation, 40
text and background images, 76
variable-width tabs, 104

padding value, background-origin,
84–85

page download times, 9, 21, 78
pagination style navigation, 25,

32–36, 38
paragraphs with rounded corners,

161, 174
parent elements

absolutely positioned, 152
floating, 130
relatively positioned, 149, 151

photographs. See images
PNG images, 59–60, 72, 200
portfolio section, Deadwood

Design, 77–82
portrait format images, 35
position property

See also absolute positioning;
relative positioning

stack order, 81-2
positioning backgrounds, 69
positioning captions, 58–59
positioning form labels, 121
properties useful in tables, 191–

192
pseudo-classes, CSS 3, 206

R
radio button grouping, 143–146
Rapha web site, 5–6
readability, 23, 122, 199
reading direction and layout, 121
relative positioning, 10

browser window resizing and,
74

captions on top of images, 60
fieldsets within spans, 140
legend element, 134
ordered list in grouped form

elements, 146
unordered list in matrix

navigation, 109
z-order and, 81

required form fields, 147–149
resizing

background images, 71
browser windows, 70–72, 74–

75, 80–82, 178
text, 134, 145, 169, 174

RGB colors, 67
right-aligned labels, 123, 132–133,

145

rounded corners, 154–180
CSS 3 potential, 207
definition lists, 156–167
liquid layouts, 175–178
tabbed navigation, 98–100
whole page layouts, 162–167

row group element, 186
rowspan element, 187
rules attribute, table element,

184–185

S
screen readers, 120–121, 188

See also accessibility
script tags, including the sifr.js

file, 16
scrolling, 6, 121
search engines and text as images,

76
selectors, CSS, 17, 206
semi-transparent captions, 59
sIFR (scalable Inman Flash

Replacement), 12–21
spaces. See whitespace
span element

See also wrapper elements
captioned images, 55, 61
hiding markup, 10
hiding text, 76
legend workaround for Firefox,

140
size setting, 11
tables, col and colgroup, 188–

191, 205
stack order, 81–82
strong element, 149, 151
style sheet simplicity, 102
styling hooks

div elements as, 168, 171–172,
176

forms layout, 125, 147
rounded corner designs, 155,

166–167
unordered list items as, 87

submit buttons, 126, 128, 135–137
Subtraction web site, 2
Superfluous Banter web site, 108

T
tabbed navigation, 98–107

final style sheet, 101–102
variable-width tabs, 102–107

table element, 182–185, 191
tables, 182–208

applying backgrounds, 194–196
cell backgrounds, 194–195
cell spacing, 192
CSS 3 potential, 206–208

example applications, 196–202
row and column highlighting,

203–206
sorting, 205
spreadsheet functionality, 206
striping alternate rows, 199–

202, 206
styling, 191–196
using JavaScript, 202–208

‘tag soup,’ 83, 179
See also non-semantic markup

tbody element, 186, 200
td element, 182, 187–188
text

See also alternative text;
resizing

hiding, 7–9, 76
as images, 75-76

text-decoration property, 173
text-indent image replacement,

7–9, 11, 73–75, 165
text wrapping

captioned images and, 57
contextual images and, 47
Flash replacement techniques,

18–21
label elements and, 130
legend elements, 145

tfoot element, 186
th element, 182, 187–188
thead element, 186
thumbnail images

album pages, 41–44
obscuring, 81
styling navigation thumbnails,

32–36
thumbnail pages, 36–40

tiling, background-repeat, 68
top-positioned labels, 122, 129
tr element, 182, 187
transparency

GIF support, 200
semi-transparent captions, 59
setting for Flash movies, 17
submit button backgrounds, 136
transparent pixels, 78
transparent PNG support, 59–

60, 72, 200
typefaces

See also fonts
Cooper Black, 14
FONTSMACK web site resource,

16
headings, 3–4
limited distribution of, 4, 14
serifs and readability, 23
sIFR embedding of, 14
varied effects, 6
whitespace and, 15

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

liv The Art & Science of CSS Index 214

U
unitless line-heights, 159
universal selectors, 157
unordered lists

as block-level elements, 87
Cartography Corner navigation,

87
navigation matrix technique,

109
pagination style navigation, 25,

32
portfolio displays, 77, 79

usability, 12, 22, 88, 113, 122

V
validation, unitless line-heights,

159
vertical and horizontal flexibility,

167–175

vertical flexibility, 156–167
vertical navigation, 88–95
visibility property, 21
visually impaired users. See

screen readers

W
W3C specification, 188
white, usefulness of, 26, 61
whitespace, 15, 90, 127–128
width attribute, colgroup element,

189
width property

image captions, 61–62, 64
images and thumbnails, 31,

34–35
width settings, 145, 169
window mode, 18
wrapper elements, 105

See also div element; span

element
rounded corner layouts, 163,

176
as styling hooks, 125

Y
You Are Here navigation, 92–96,

101–102, 106–107, 112–113

Z
z-index property, 77, 81–82
zebra tables, 199–202

Order the print version of this book to get all 200+ pages!

http://www.sitepoint.com/launch/d8431a/

